
presented at the: 8th International CTI Symposium Innovative Automotive Transmissions, Berlin, 1 - 2.12.2009.

Test-driven Development of DCT Control Software

Dr. Nikolaos Papakonstantinou, Dr. Sigrid Klinger
GIF - Gesellschaft für Industrieforschung mbH

{nikolaos.pap, sigrid.klinger}@gif.net

Dr. Mugur Tatar
QTronic GmbH

mugur.tatar@QTronic.de

Abstract

Transmission systems, such as DCTs, require systematic test and validation methods in order to
guarantee correctness and quality despite shorter development times and increasing complexity.
Therefore, during the development of a new dual clutch transmission at GIF, a process for extens-
ive test and optimization of the control software has been adopted. For this, system correctness
and quality criteria are evaluated for thousands of simulated test scenarios (driving maneuvers).
Problems and system weak points are identified and corrected as early as possible and the pro-
cess is repeated after each correction or system change. The tool TestWeaver [2] from QTronic
was used for the systematic generation and evaluation of the test scenarios. This allows achieving
high test coverage with minimal test specification effort. This extensive test process drives and ac-
celerates the optimisation of the control software. Beside MIL tests also intensive SIL, HIL and
tests with the real hardware components in the loop must be performed in order to guarantee the
functionality of the automatically generated code, the proper functionality of the TCU including
electronics and CAN communication, and the robustness of the software functions under real oper-
ating conditions [3].

1 Introduction

Transmission systems are under continuous improvement with respect to efficiency, robustness,
costs and comfort. Many of these requirements have to be addressed also by the transmission
control software, which is becoming more and more intelligent. Many driving conditions have to be
detected fast and reliably. Specific, optimized actions and control strategies have to be performed
in order to achieve the optimum balance between often conflicting goals: efficiency, agility, comfort.
Many modules are interacting and cooperating in order to achieve the system requirements. The
test and the validation of the control strategies become, however, also more difficult. Module tests
performed in isolation, no matter how extensive, cannot assess the emerging system behaviour,
while the test of the system in only a limited set of predefined test scenarios does not scale with
the huge number of differing situations that need to be tested and validated.
The software of the new GIF DCT is developed using a model-based development process with
Simulink and TargetLink. The complete control software model can be simulated in closed-loop
with a realistic plant model developed also in Simulink - including transmission hydraulics, mechan-
ics and vehicle model. For faster simulation the complete model is compiled with Real-Time Work-
shop from Mathworks. This way, the simulation runs about 20 times faster than real-time on a com-
mercial PC. The simulation includes, beside the control model and the plant model, also several
correctness and quality observers implemented in Simulink. TestWeaver then controls and evalu-
ates the simulation runs. Thousands of scenarios are automatically generated and assessed in a
reactive loop in which TestWeaver actively attempts to reach all possible system states with at
least one scenario and to find scenarios with correctness or quality problems. For instance, it will
try to reach all transmission shifts, simple (e.g. 4-5) and multiple (e.g. 6-4), with many differing
speed and torque loads, with differing street slopes, with and without braking, with or without chan-

ging the acceleration pedal during the shift, with ideal sensor models or with active injection of
sensor faults. All problems found can be recalled and analysed in detail in simulation by the devel-
opment engineers. The corrections are then validated again in simulation. The complete test pro-
cess is repeated after each significant software change.
Beside the software tests performed in the simulation environment, functional tests on special DCT
test rigs are performed by GIF. On these test rigs the software functions are validated and further
developed with the real hardware parts of the transmission in all driving and environmental condi-
tions. In that way the robustness of the DCT software, which is desired for the series production, is
guaranteed.

2 The new GIF DCT

GIF is currently developing a compact dual clutch transmission for a large Asian customer. A broad
development process is employed to address all aspects of the total development responsibility, in-
cluding:

• Definition of load profiles suitable for the DCT
• Test specification
• Design concept
• Detailed DCT design
• Functional software development
• Durability tests
• Vehicle application and calibration with different climate trips

A very significant and challenging task also is the management and coordination of the different
suppliers. The integration of the mechanical and hydraulic components and the choice of the prop-
er sensors and transmission control unit are of significant importance for the proper functionality of
the DCT. The optimal DCT operation can only be guaranteed under the proper and safe operation
of the complete mechanical-hydraulic and electronic sub-systems.

The new GIF DCT includes the following defining features:

• Gear set with dual usage of the 3/5 and 4/6 gear
• Short and compact synchronizers
• Wet dual clutch in radial form and integrated torsion damper
• Separate hydraulic module
• External transmission control unit

3 The software development process

The high complexity of the DCT, the large amount of interfaces and the strict demands of the
safety standards, increase the requirements of the electronic control system. In the last years a
significant progress has been made in improving the tools and processes used for developing soft-
ware for electronic control systems. The neat integration of the new tools and processes in the
complete development of the transmission is of great importance: only this way the shorter time to
market can be achieved. Inside GIF the wide spread V-process for the development of electronic
control systems is used, as illustrated in Figure 1.

Before the software development, the specifications of the functional and of the safety relevant
software have to be available. The functional software specification derives from the analysis of the
OEM’s demands and from the product specification. The resulting functional software specifica-
tions are validated with a detailed benchmarking of a similar DCT already launched on the
European market. The specification of the safety software is based on the FMEA, hazard and risk
analysis of the DCT. Also the demanded safety standards are considered. In the end the specifica-
tion of the safety software by means of fail-safe functions and failure reaction is defined.

Figure 1: V-Process used for the DCT software development

The DCT control software, consisting of functional and safety software, is developed with model-
based techniques using Matlab/Simulink as modelling and simulation tool. For this purpose also a
simulation model of the physical subsystems of the powertrain is developed. This model consists of
a simplified engine model, the DCT hydraulics and mechanics, and a reduced vehicle model. It has
to be suitable for simulating the dynamic behaviour of the powertrain in all driving situations which
are relevant for the transmission functionality. For this purpose a detailed hydraulic model, de-
veloped by the hydraulic supplier, is coupled with the mechanical model of the transmission.
The algorithms described in the functional and safety software specification are modelled with Sim-
ulink block diagrams and are tested in closed loop simulation with the powertrain model. With help
of a user interface it is possible to interactively control the driver commands and other system in-
puts. Alternatively, this simulation is coupled to TestWeaver for automatic scenario generation and
assessment. Section 5 and 6 will explain this process in more detail.

Figure 2: Model-based function development

The next phase in the development process is the function prototyping phase, where the de-
veloped algorithms are tested and validated with the real hardware components. For this purpose
rapid prototyping tools from dSPACE are used. From the Simulink modules for the functional and
safety software, C-code is automatically generated using Real Time Workshop / Mathworks and
Real Time Interface / dSPACE. The prototype code can then run in a prototype controller from
dSPACE. This tool chain is very flexible and minimises the time to prototype tests, since the engin-
eers can concentrate purely on the function development.

In the same development environment also the embedded code generation is integrated. Using the
same Simulink modules and with Target Link from dSPACE a 100% automated embedded code
for the target TCU is generated. Based on Target Link, Software-In-the-Loop tests (SIL) are pos-
sible. In the SIL tests the generated embedded code is tested in closed loop simulation using the
same powertrain model. The differences between the functional Simulink models and the gener-
ated code are analyzed in order to evaluate the efficiency of the generated code. The number of
performed test cases, selected from a generated data base, depends on the target test coverage.

The generated embedded code of the functional software is integrated with the software from the
TCU supplier. This code contains the operating system, the BIOS and the fault monitoring func-
tions of the electronic system. This consists of the microcontroller, the sensors and the actuators of

the hydraulic module. The complete embedded code is then flashed in the production TCU. The
software integration and the correct operation of the functional code on the target processor is
checked and validated in a HIL system. In the HIL test the driving situations can be simulated using
again the same powertrain model as in MIL and SIL. Furthermore, some critical situations, such as
those caused by electrical failures, are simulated and the behaviour of the TCU is validated. The
tested TCU is then released for vehicle use and for the final calibration procedure – for more de-
tails see [3].

4 Tests during functional developments

The software development process described above consists of different steps where the test and
validation of the current software must be done. In the following sections the test procedures will
be explained with special focus on the tests done during the functional development phase. Due to
the complexity and the large number of modules (160), it is very important to start tests in the early
development phase. Beside the module tests performed for each function in isolation, tests have to
be done with the complete functional software in closed loop simulation with a realistic powertrain
model. Only in that way the interdependencies between the functions, the interfaces and proper
data exchange can be tested. For this purpose the complete software is handled as a “black box”
with certain defined inputs and outputs. The inputs of the control software can be separated in
three categories. In the first category are the driver dependent inputs, such as acceleration pedal,
brake pedal and shift lever position. In the second category are the transmission and vehicle de-
pendent inputs, such as sensor information for speeds, actuator positions, etc. The third category
includes the environment dependent inputs, such as temperature and road slope. The software
“black box” can be tested in closed-loop simulation with freely varying inputs from the driver and
the environment and with constrained transmission and vehicle inputs computed by the powertrain
model.
The amount of test cases relevant for the system is huge. It is probably impossible, or unfeasible,
for a test engineer to define a complete set of test scenarios by hand. Beside the definition of the
relevant test stimulus, also the test evaluation and the report generation are difficult and time in-
tensive tasks. For this reason the tool TestWeaver from QTronic was integrated for automatic test
generation, evaluation and reporting. TestWeaver is integrated in the model-based software devel-
opment tool chain, since it is 100% compatible with Simulink. The following two sections describe
the usage of TestWeaver during the development of the GIF DCT.

4.1 Scenario generation and assessment with TestWeaver

The specification of the interface between TestWeaver and the simulation is done in Simulink with
the help of a block-set for TestWeaver. Each system input that is controlled by TestWeaver is set
using a Chooser block, while the signals which are reported to TestWeaver are connected to Re-
porter blocks. During simulation TestWeaver autonomously sets the chooser-signals and reads the
reporter-values. Thousands of differing test scenarios are generated and the system response is
analysed and stored in a database. TestWeaver learns from the observed system behaviour and
continuously adapts the scenario generation such as to (i) increase the coverage of the system
states observable through the interface, and to (ii) detect problems in the system. For this purpose,
in the Chooser and the Reporter blocks the value domain of the continuous signals is mapped to a
discrete set of intervals that are relevant for the state coverage analysis. TestWeaver records and
analyses the trajectories of the system state in this discrete state space, and intelligently tries to
reach as many differing discrete states as possible during the scenario generation. Several soft-
ware faults that provoke a simulation crash, such as divisions-by-zero, access violations, infinite
loops and others, are automatically registered by TestWeaver. Furthermore, some of the reporter
intervals can be marked with an abnormal or critical severity – this way TestWeaver will be in-
formed about additional undesired or abnormal system states.

The system states reached during a test are reported using HTML tables. Via further links, descrip-
tions are provided about how each state can be reached. Based on this information, at the end of
the test, the scenarios with problems can be replayed in simulation by the development engineers
for detailed analysis and debugging. More details about the tool can be found in [2].

Figure 3: The definition of a reporter for TestWeaver

Figure 4: Automatic scenario generation and assessment

4.2 Testing the DCT functional software

The simulation started by TestWeaver includes: the DCT control software, the powertrain model,
the driver’s input block, where the choosers of TestWeaver are inserted, and a scope block where
different state variables and the reporter blocks of TestWeaver are integrated. Additional functions
can be added, beside the functional software and the powertrain model, and can be used as qual-
ity observers and for a better scenario assessment during the tests.

The signals controlled by TestWeaver in this application include the ignition, the acceleration ped-
al, the brake pedal, the shift lever position and the road slope. For assessing the coverage of the
reached system states and activated control functions, several signals from the software and from
the powertrain model are reported, such as car and engine speed, engine torque, internal gearbox
speeds, actual and target gear, status of the synchronization according to the TCU controller and
according to the powertrain model, clutch swapping status, shift time and timers running when the
software is in critical loops.
Beside software problems that cause a crash of the simulation process, such as divisions-by-zero
and access violations, etc., the following system problems can be detected automatically: engine
over-speed, odd/even shaft over-speed, fault codes set from the safety software, too long shift
times, too long clutch slip times, too high clutch temperatures, too long durations of certain control
phases, and others.
Because TestWeaver records all discrete events, all transition sequences and all transition times,
certain correctness and quality indicators are reported by analysing the scenario database recor-
ded during the test. Examples of such problems are bad state estimation algorithms (estimation not
matching state in the model for long time), unintended or spurious control sequences (such as re-
peated changes of the target gear, illegal control sequences), too long shift durations, etc. Certain
quality indicators can be reported globally per experiment or for differing operating conditions, such
as: average and maximal shift durations, average and maximal clutch temperatures. The quality in-
dicators can be used to compare the effectiveness of software optimizations, for instance by com-
paring the test results obtained by different versions of the control software. The workflow for the it-
erative software test, analysis and optimization is illustrated in the following figure.

Figure 5: Workflow with TestWeaver

The Simulink model that contains the DCT control software, the powertrain model, the driver model
and the scopes are compiled with Real-Time Workshop for faster simulation. During scenario gen-
eration with TestWeaver the compiled model is used. This simulation runs about 20 times faster
than real time1 on a normal PC. This way in 16 hours running time more than 14.000 scenarios are
generated. The test results are summarized afterwards with respect to specific aspects, e.g. con-
ducted gear shifts, shifts with long duration etc. For this purpose the test reports can be configured
and stored by the user. Following the test results can be analyzed in detail by model experts by re-
playing specific scenarios in Simulink. Bugs are repaired and optimization of the functions can be
performed. After repairs or optimizations the tests can be repeated. TestWeaver allows also ex-
porting scenarios in order to create a test data base which is used for regression tests or for code
coverage, as can be seen in the following section.

5 Tests during function prototyping

The phase of function prototyping is very important in order to validate the developed functional
software with the prototype hardware. Testing takes place in test environments similar to test rigs.
In the following figure the different test facilities and phases during function prototyping are presen-
ted.

Figure 6: Test phases during function prototyping

The validation and the robustness of the Low Level Functions of the DCT are key components for
the proper function of the transmission under all conditions (e.g. temperature, driving conditions,
tolerances). The Low Level Functions are the functions responsible for positioning the shift forks,
the torque transfer and the control of the hydraulic module (main pressure, lubrication, oil filling).
Since these functions are depending on the behaviour of the hardware system very strongly, the
development of these functions is very difficult, and it would not be sufficient if they were based
solely on the simulated powertrain model. For this reason, after the model based development of
the Low Level Functions, tests and further development are performed on a special electro-motor
test rig. On this test rig the low level functions are tested and validated in all conditions in order to
ensure the proper DCT operation. In this phase also the adaptation of the safety functions to the
real hardware and sensor signals can be done. The test procedures and the test cases on this test
rig are mostly related to differing operation conditions, such as temperature, speed and torque.

1 As opposed, the interpreted Simulink model runs about 15 times slower than real time.

Subsequently, a test rig with a combustion engine is used. Here the Low Level Functions are op-
timised and adapted to the operation with a combustion engine. On this test rig the same load con-
ditions as in the vehicle operation can be achieved. This way it is possible to verify and validate
also the High Level Functions designed with the powertrain model. The High Level Functions, con-
sisting of the driving strategies, the transmission and the clutch coordinator, can be adapted to the
tolerances of the mechanical system and the quality of the sensor signals - which cannot be simu-
lated realistically with the powertrain model. A very critical issue for DCTs, which is also tested on
the combustion engine test rig, is the communication with the engine and the validation of inter-
faces between the TCU (prototype) and the engine ECU. The software functions can be validated
in that way with the real accuracy-tolerances of the torque information provided by the ECU.
The final tests during function prototyping take place in a vehicle equipped with the DCT and the
control-application system from dSPACE. In this phase the High Level Functions are validated in
the real vehicle and the functionality of the calibration interfaces is verified. The communication
with other control units over CAN and the complete interface of the prototype TCU can also be
tested.

6 Embedded code generation and validation

When leaving the stage of working with prototype control units and entering the stage of serial con-
trol units, embedded C-code has to be generated. In this project TargetLink is used to generate C-
code automatically. TargetLink is an add-on tool for Matlab/Simulink. Simulink models can be con-
verted into TargetLink models automatically. The TargetLink model contains specifications con-
cerning the variable class, data type, the least significant bit, etc. With these settings the software
specialists are able to generate C-code automatically. The function developers can use the same
TargetLink model for further development as well. They use a TargetLink stand-alone software-ver-
sion, that means only Simulink functionality is activated. The code specific options are not activ-
ated, so that the model can be used the same way as in the Simulink environment. The advantage
of this workflow is, that even in early development stages, model configuration referring to code
generation can be done - function developers as well as code specialists can work on the model in
parallel.
With TargetLink also SIL simulations can be conducted. For this purpose the C-code is embedded
into a simulation frame which is the interface between the code and the Simulink environment. The
model first runs in Model-In-the-Loop simulation with floating point arithmetic. Afterwards the model
runs in Software-In-the-Loop simulation, with data types specified in the C-code, i.e. integer arith-
metic. Both simulation results can be compared in order to ensure that the C-code gives the same
results as the Simulink model.
As suitable inputs a set of realistic driving scenarios is integrated into the simulation program, so
that all possible shifts are conducted. With TargetLink the code coverage can be evaluated. If the
code coverage is not sufficient the input test scenarios have to be expanded. Therefore the test
data base with scenarios computed by TestWeaver is used. The tests are closed if sufficient test
coverage according to the software integrity level is reached. In the following figure the process for
the code quality test is illustrated.

Figure 7: Embedded code quality control and coverage

7 HIL testing

The embedded code generated with Target Link contains the application software of the DCT. This
code, in order to run in the production TCU, has to be integrated with the basic software of the
TCU supplier. The basic software contains the operating system, the boot manager, the I/O man-
agement and the diagnosis functions. Using a build process, the final files which will be flashed in
the TCU are generated (.hex and .a2l). For testing the correct software integration, the TCU is in-
tegrated in a HIL system supplied by dSPACE. The first tests performed in the HIL system are in-
tegration tests. In the integration tests the communication between the application and the basic
software via the sharing interfaces is verified. Also the communication of the basic software with
the virtual sensors, the real actuators and the CAN is tested.

Figure 8: Software integration and flashing

Beside the integration tests, also functional tests are performed in HIL in order to validate the prop-
er operation of the integrated software. The test scenarios used for performing the functional tests
are chosen from the created TestWeaver test data base.
A further significant usage of the HIL system is to test the behaviour of the TCU under critical con-
ditions, such as the ones caused by electrical failures. Using a Failure Insertion Unit (FIU) it is pos-
sible to provoke electrical failures on the TCU pins. All possible failure types, such as open circuit,
short to ground and short to battery are initiated and the appropriate failure recognition and failure
reaction is verified. For assessing the failure recognition the trouble codes generated by the TCU
can be read. For assessing the fault reaction the behaviour of the powertrain model running in the
simulator is analysed. The test cases for the electrical failures result from the electrical failure spe-
cification of the system. The electrical failure specification table (.xls) contains the corresponding
failure code and failure reaction for each electrical failure. The control of the test flow is done using
Automation Desk from dSPACE. In Automation Desk test scripts can be developed using graphical
interfaces and Python scripts. Via Automation Desk the whole test flow can be controlled and test
reports can be generated automatically. The signal flow used for testing the electrical failures of the
TCU is illustrated in the following figure.

 Figure 9: Signal flow during HIL testing

Since the communication of the different modules of the HIL environment is quite complicated, as
can be seen in the figure above, some intelligent communication techniques are used in order to
improve the HIL performance. For this reason the whole simulation is controlled by the Automation
Desk. Automation Desk performs tests in loops. Measured data from the TCU and the powertrain
model running on HIL are requested when a test is finished. Data from the TCU calibration tool
CANAPE (Vector Informatik) are collected and a script running in Matlab is automatically started
(not shown in the picture). This script contains evaluation criteria for the executed test and can de-
cide if the test is passed or not. This is based on existing, predefined criteria from the failure spe-
cification list. Automation Desk is also able to erase the failure memory of the TCU (via CANAPE)
in order to continue with the next test loop. This way the test execution and the test evaluation are
done automatically. The user only needs to read the test report and to forward the possible failures
to the function developers.

8 Summary and outlook

The complexity of transmission systems is steadily increasing due to growing market expectations
regarding efficiency, agility and comfort. The corresponding development times are constantly
shortened, while simultaneously keeping high quality standards. The growing complexity and lim-
ited resources impose an increasing pressure on both OEMs and suppliers to further improve the
development process. In particular, also the test and validation have to become more reliable and
more cost-effective.
For the new DCT development project GIF has adopted a comprehensive software test and valida-
tion method. Thousands of driving maneuvers are autonomously generated, executed and evalu-
ated using simulation. Due to the high degree of automation, the test effort spent by the develop-
ment engineers is significantly reduced, while, at the same time, the test coverage is significantly
increased. Future improvement directions regard the application of the scenario generation and

evaluation for tests directly on SIL and HIL platforms. QTronic has recently extended its product
range to cover these requirements.
Furthermore, beside the tests done in the simulation environment, very important complementary
tests are done during the function prototyping phase. Tests with real hardware components must
be done in order to ensure the robustness of the software functions under all environment and
transmission states. During the development of the GIF DCT a large number of tests on test rigs
has been performed in order to validate the proper and robust functioning of the transmission. The
intensively tested software after the prototyping phase represents a good starting basis for the em-
bedded code generation for the production TCU. The C-code generated from the Simulink block
diagrams is subsequently tested in SIL and sufficient code coverage is guaranteed using test
cases from the generated test data base. In this phase some further development is needed, since
the execution time of the tests using the generated C-code in closed loop with the powertrain mod-
el is relatively long. HIL tests are done at the end of the process with the production TCU and the
integrated software. These tests are very important in order to guarantee the proper integration of
the different software parts and the function of the communication interfaces. During HIL tests, the
functionality of the complete TCU, including the reaction to electrical failures, is tested. This con-
sists of testing the failure recognition and the failure handling. Since the HIL is a very complex set-
up with many different systems and different interfaces, a better system communication and stand-
ardization could improve the test performance, especially with respect to automation and auto-
mated evaluation of the test results.

References

[1] Rebeschieß, Liebezeit, Bazarsuren, Gühmann: Automatisierter Closed-Loop-Testpro-
zess für Steuergerätefunktionen. ATZ Elektronik, 1/2007 (in German).

[2] Junghanns, Mauss, Tatar: TestWeaver - Simulation-based Test of Mechatronic
Designs. Proceedings of International Modelica Conference, Bielefeld, 2008.

[3] Nissen, Papakonstantinou, Steinwascher, Kaufhold, Schneider, Schlipf: Entwicklung
eines kompakten Doppelkupplungsgetriebes, 18. Aachener Kolloquium Fahrzeug- und
Motorentechnik 2009 (in German).

	1 Introduction
	2 The new GIF DCT
	3 The software development process
	4 Tests during functional developments
	4.1 Scenario generation and assessment with TestWeaver
	4.2 Testing the DCT functional software

	5 Tests during function prototyping
	6 Embedded code generation and validation
	7 HIL testing
	8 Summary and outlook

